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Hydrodynamic interactions between particles and
walls are relevant for the open problem of specifying
boundary conditions for suspensions flows. The Reynolds
number around a small particle close to a wall is usually
low and creeping flow equations apply. In this presenta-
tion, I will focus on hydrodynamic interactions between a
settling particle and walls when the normalized distance
with walls is larger or lower than unity.

In the far-wall hydrodynamic interactions between a
settling particle and walls, several types of containers
are considered here: circular cylinders closed by planes
at both ends, cones closed by a base plane, .... The
axis of the container is set in a vertical position. The
cone tip is pointing down. The particle is solid and
spheroidal (sphere, sphere slightly deformed, sphero-
cylinder, ...). It is settling along the container axis so that
the fluid motion is axisymmetric. The Stokes flow prob-
lem is solved numerically, using a technique pioneered by
Bourot (1969) and used thereafter in various problems by
Coutanceau and coworkers. The solution of Stokes equa-
tion for the fluid velocity is written as a series in spherical
coordinates around the sphere and the boundary con-
dition on the sphere is applied exactly. The boundary
condition on the walls of the container then is applied
in the sense of least squares: the quantity to minimise is
written as an integral on the boundary of the squared dif-
ference between the approximated velocity and the value
to be enforced. The minimization provides the coeffi-
cients in the series. Calculated streamlines patterns for
a small sphere in a cylinder are in agreement with re-
sults by Blake (1979) for a Stokeslet in a cylinder but
differed from the ones obtained by Sano (1987). Various
sets of eddies appear in cylinders and cones, depending
upon the geometry and the sphere position. Results are
in agreement with earlier works about eddies in close con-
tainers and corners when in Stokes flow (Moffatt 1964,
O’Neill 1964, O’Neill 1983). With a standard computer
accuracy, the present numerical technique applies when
the gap between the sphere and the nearby wall is larger
than about one radius.
For a sphere in the vicinity of any of the plane walls, we
match our results with the analytical solution of Bren-
ner (1961) and Maude (1961). Our results for the drag
force supplemented with the analytical solution of Bren-
ner (1961) and Maude (1961) near the plane walls (at dis-
tances typically less than a diameter, depending on the
sphere size) are in excellent agreement with the experi-
mental data for the cylindrical and the conical containers.
Experiments show that the motion towards the apex of
a cone is much slower than that towards a plane. This
is because of the hindered backflow. For a dimensionless
gap (normalized with the sphere radius) much smaller
than unity, the drag force in a cone varies like the nor-
malized distance to the power (-5/2), in agreement with

the lubrication result of Masmoudi et al (1998), whereas
it varies like the normalized distance to the power (-1)
close to a plane (Lecoq et al (2007)). Wakiya (1976)
presented the general features of a three-dimensional ax-
isymmetric flow in a space with a conical boundary. His
solution near the apex reveals features similar to Mof-
fatt’s flow (see Moffatt (1964)). In the same way as in
the two-dimensional case, Wakiya showed the existence
of an infinite sequence of eddies near the apex for cer-
tain values of the semi-angle of the cone, which are in
general less than about 80.9o. The Stokes assumption is
valid sufficiently near the apex of the cone and the be-
haviour of the fluid there is to some extent independent
to the nature of the far field. In the general solutions
presented in details here are considered separately the
presence or absence of a dead water area in the apex of
the cone. The main differences between both solution are
discussed. Then, the theoretical solutions are compared
with the experimental measurements for cones with var-
ious semi-angle at the apex (90o (plane wall), 89o, 88o,
85o, 80o, 65o, 45o). For all the cases, the theoretical re-
sults for the normalized velocity were found to be in very
good agreement with experiments (Lecoq and Feuillebois
(2007)).
From the solution of the creeping-flow equations, the
drag force on a sphere becomes infinite when the gap
between the sphere and a smooth wall vanishes at con-
stant velocity, so that if the sphere is displaced towards
the wall with a constant applied force, contact theoret-
ically may not occur. Physically, the drag is finite for
various reasons, one being the particle and wall rough-
ness. Then, for vanishing gap, even though some layers
of fluid molecules may be left between the particle and
wall roughness peaks, conventionally it may be said that
contact occurs. This physical importance of roughness
provide thus a strong motivation for studying the hydro-
dynamic of suspension with rough surface. In this last
part of the presentation, we are considering the example
of a smooth sphere moving towards a rough wall. Smart
& Leighton (1989) measured the hydrodynamic effect of
the surface roughness of a sphere moving perpendicularly
to a smooth wall. Some of their spheres were made rough
by gluing very small spheres on their surfaces. Here we
make the reverse, that is we prepare walls with a definite
roughness, and the sphere roughness is small in compar-
ison. The roughness considered here consists of parallel
periodic wedges, the wavelength of which is small com-
pared with the sphere radius. This problem is consid-
ered both experimentally and theoretically (Lecoq et al
(2004)).
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