Motion of an ellipsoidal particle in a shear flow along a porous slab

Sondes Khabthani¹, Antoine Sellier² and François Feuillebois³

¹Laboratoire Ingénierie Mathématique, Ecole Polytechnique de Tunisie rue el khawarezmi,BP 743,La Marsa,Tunisie.

sondes.khabthani@ept.rnu.tn

²LadHyX. Ecole Polytechnique. 91128. Palaiseau cédex. France,

sellier@ladhyx.polytechnique.fr

³ LIMSI-CNRS, UPR 3251, B.P. 133, 91403 Orsay Cédex, France

francois.feuillebois@limsi.fr

Abstract

This work examines the motion of a solid and non-necessarily-spherical particle with surface S near the upper boundary Σ_1 of a plane porous slab. The flow is governed by the Stokes equations in the fluid domains and the Darcy's equations in the porous medium with permeability $K \ge 0$. These equations are coupled across the porous slab upper and lower plane boundaries Σ_1 and Σ_0 by a slip boundary condition (BJ) proposed by Beavers and Joseph [1].

A modified boundary-integral approach, avoiding integrals on the surface Σ_1 , is used to obtain the fluid velocity in the liquid domain and the net force and torque exerted by the flow on the particle surface [2, 3].

Numerical results are presented and discussed for an ellipsoidal solid particle that is translating and rotating when settling under the action of a prescribed uniform gravity field **g** or freely suspended in a linear or quadratic ambient shear flow with velocity \mathbf{u}_{∞} along the wall Σ_1 . The ellipsoidal particle has center O', semi-axes $a_1 = 1.2a$, $a_2 = 1/a a_3 = a$ and its orientation with respect to Σ_1 is given by the angle $\alpha = \pi/4$. For conciseness, we restrict our attention to rigid-body motions $(\mathbf{U}, \mathbf{\Omega})$ such that $\mathbf{U}.\mathbf{e}_2 = 0$ and $\mathbf{\Omega} \wedge \mathbf{e}_2 = \mathbf{0}$ (where \mathbf{e}_2 is a unit vector tangent to Σ_1 and parallel to the ambient vorticity). In such circumstances and adopting the scaling employed for a sphere having the same volume (i.e with radius *a*) [4, 5], we normalize the drag force, torque, translational and rotational velocities as follows:

$$\mathbf{F}_{h} = -6\pi\mu a \{ \{ f_{11}(\mathbf{U}.\mathbf{e}_{1}) + f_{13}(\mathbf{U}.\mathbf{e}_{3}) \} \mathbf{e}_{1} + a f_{12}(\boldsymbol{\Omega}.\mathbf{e}_{2}) \mathbf{e}_{1} + \{ f_{33}(\mathbf{U}.\mathbf{e}_{3}) + f_{31}(\mathbf{U}.\mathbf{e}_{1}) \} \mathbf{e}_{3} + a f_{32}(\boldsymbol{\Omega}.\mathbf{e}_{2}) \mathbf{e}_{3} \},$$
(1)

$$\Gamma_{h} = -8\pi\mu a^{2} \{ \{ c_{21}(\mathbf{U}.\mathbf{e}_{1}) + c_{23}(\mathbf{U}.\mathbf{e}_{3}) \} \mathbf{e}_{2} + ac_{22}(\boldsymbol{\Omega}.\mathbf{e}_{2}) \mathbf{e}_{2} \},$$
(2)

$$\mathbf{U} = \frac{2}{9} \frac{a^2}{\mu} (\rho_S - \rho) \{ \{ u_{11}^s \mathbf{e}_1 + u_{31}^s \mathbf{e}_3 \} (\mathbf{g}.\mathbf{e}_1) + \{ u_{13}^s \mathbf{e}_1 + u_{33}^s \mathbf{e}_3 \} (\mathbf{g}.\mathbf{e}_3) \}, \text{ if } \mathbf{u}_\infty = 0,$$
(3)

$$\mathbf{\Omega} = \frac{2}{9} \frac{a}{\mu} (\rho_s - \rho) \{ \omega_{21}^s(\mathbf{g}.\mathbf{e}_1) + \omega_{23}^s(\mathbf{g}.\mathbf{e}_3) \} \mathbf{e}_2, \text{ if } \mathbf{u}_\infty = 0,$$
(4)

$$\mathbf{U} = \gamma_1 (l + \frac{\sqrt{K}}{\sigma}) \{ u_1^l \mathbf{e}_1 + u_3^l \mathbf{e}_3 \} + \gamma_2 (l^2 + \frac{a^2}{3} - 2K) \{ u_1^q \mathbf{e}_1 + u_3^q \mathbf{e}_3 \}, \text{ if } \mathbf{g} = \mathbf{0},$$
(5)

$$\mathbf{\Omega} = \left(\frac{\gamma_1}{2}w_2^l + \gamma_2 l w_2^q\right) \mathbf{e}_2, \text{ if } \mathbf{g} = \mathbf{0}.$$
(6)

By comparison with a sphere, nine additional dimensionless quantities appear: f_{31} , f_{13} , f_{22} , c_{23} , u_{31}^s , u_{13}^s , w_{23}^s , u_{3}^l and u_{3}^q . These new quantities (which vanish for symmetry reasons for a sphere) obey the relationships $f_{13} = f_{31}$ and $4c_{23} = 3f_{32}$ for arbitrarily-shaped particles when K = 0 (K denoting the permeability of the porous slab) or for a distant porous slab. In general for the (BJ) slip condition one has $f_{13} \neq f_{31}$, $4c_{23} \neq 3f_{32}$ and $4c_{21} \neq 3f_{12}$. The talk will present the sensitivity of the normalized quantities to K and to the ellipsoid location.

1. References

- [1] G.BEAVERS AND D.JOSEPH, Boundary conditions at a naturally permeable wall, J.Fluid Mech., 30:197-207, 1967.
- [2] S.KHABTHANI, A.SELLIER, L.ELASMI AND F.FEUILLEBOIS, A modified boundary integral equation method for filtration problem, International Conference on Boundary Element Techniques X BETEQ09. Athens, Greece, 2009.
- [3] FRANÇOIS FEUILLEBOIS, SONDES KHABTHANI, LASSAAD ELASMI AND ANTOINE SELLIER, Methods for the coupled Stokes-Darcy problem. American Institute of Physics. vol.1301, 2010, pp14-25.
- [4] S. KHABTHANI, *Modélisation mathématique et numérique du problème de filtration tangentielle*, Ph.D. dissertation, Université Pierre et Marie Curie, Paris 6 and Ecole Polytechnique de Tunisie, 2010.
- [5] S.KHABTHANI, L.ELASMI, Etude des solutions élémentaires du problème de filtration tangentielle,18ème Congrès Français de Mécanique, Grenoble, 2007.
- [6] C.POZRIKIDIS, Boundary integral and singularity methods for linearized viscous flow, Cambridge University Press, 1992.
- [7] M.BONNET, Boundary integral equation methods for solids and fluids, John Willey and Sons LTD, 1995.